
 
1

Kalman Filtering with Nonlinear State Constraints 
 

Chun Yang 
Sigtem Technology, Inc. 

113 Clover Hill Lane 
Harleysville, PA 19438 
chunyang@sigtem.com 

Erik Blasch 
Air Force Research Lab/SNAA 

2241 Avionics Circle 
WPAFB, OH 45433 

erik.blasch@wpafb.af.mil 
 

 
Abstract – In [Simon and Chia, 2002], an analytic 
method was developed to incorporate linear state 
equality constraints into the Kalman filter. When the 
state constraint is nonlinear, linearization was employed 
to obtain an approximately linear constraint around the 
current state estimate. This linearized constrained 
Kalman filter is subject to approximation errors and 
may suffer from a lack of convergence. In this paper, 
we present a method that allows exact use of second-
order nonlinear state constraints. It is based on a 
computational algorithm that iteratively finds the 
Lagrangian multiplier for the nonlinear constraints. 
The method therefore provides better approximation 
when higher order nonlinearities are encountered. 
Computer simulation results are presented to illustrate 
the algorithm. 
 
Keywords: Kalman filtering, nonlinear state constraints, 
Lagrangian multiplier, iterative solution, tracking. 

 

1 Introduction 
 
In a recent paper [Simon and Chia, 2002], a rigorous 
analytic method was set forth to incorporate linear state 
equality constraints into the Kalman filtering process. 
Such constraints (e.g., known model and signal 
information) are often ignored or dealt with heuristically. 
The resulting estimates, even obtained with the Kalman 
filter, cannot be optimal because they do not take 
advantage of this additional information about state 
constraints. 
 
One example that benefits from state constraints is the 
ground target tracking. When a vehicle travels off-road or 
on an unknown road, the state estimation problem is 
unconstrained. However, when the vehicle is traveling on 
a known road, be it straight or curved, the state estimation 
problem can be cast as constrained with the road network 
information available from, say, digital terrain maps 
[Yang, Bakich, and Blasch, 2005]. 
 
To make use of state constraints, previous attempts range 
from reducing the system model parameterization to 
treating state constraints as perfect measurements. The 
constrained Kalman filter proposed in [Simon and Chia, 
2002] consists of first obtaining an unconstrained Kalman 
filter solution and then projecting the unconstrained state 

estimate onto the constrained surface. Although the main 
results are restricted to linear systems and linear state 
equality constraints, the authors outlined steps to extend it 
to inequality constraints, nonlinear dynamics systems, and 
nonlinear state constraints. 
 
According to [Simon and Chia, 2002], the inequality 
constraints can be checked at each time step of the filter. 
If the inequality constraints are satisfied at a given time 
step, no action is taken since the inequality constrained 
problem is solved. If the inequality constraints are not 
satisfied at a given time step, then the constrained solution 
is applied to enforce the constraints. Furthermore, to apply 
the constrained Kalman filter to nonlinear systems and 
nonlinear state constraints, it is suggested in [Simon and 
Chia, 2002] to linearize both the system and constraint 
equations about the current state estimate. The former is 
equivalent to the use of an extended Kalman filter (EKF). 
 
However, the projection of the unconstrained state 
estimate onto a linearized state constraint is subject to 
constraint approximation errors, which is a function of the 
nonlinearity and more importantly the point around which 
the linearization takes place. This may result in 
convergence problems. It was suggested in [Simon and 
Chia, 2002] to take extra measures to guarantee 
convergence in the presence of nonlinear constraints. 
 
There are a host of constrained nonlinear optimization 
techniques [Luenberger, 1989]. Primal methods search 
through the feasible region determined by the constraints. 
Penalty and barrier methods approximate constrained 
optimization problems by unconstrained problems through 
modifying the objective function (e.g., add a term for 
higher price if a constraint is violated). Instead of the 
original constrained problem, dual methods attempt to 
solve an alternate problem (the dual problem) whose 
unknowns are the Lagrangian multipliers of the first 
problem. Cutting plane algorithms work on a series of 
ever-improving approximating linear programs whose 
solutions converge to that of the original problem. 
Lagrangian relaxation methods are widely used in discrete 
constrained optimization problems. 
 
In this paper, we present a method that allows for the use 
of second-order nonlinear state constraints exactly. The 
method can provide better approximation to higher order 
nonlinearities. The new method is based on a 
computational algorithm that iteratively finds the 
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Lagrangian multiplier. Considering only second-order 
constraints in this paper is a tradeoff between reducing 
approximation errors to higher-order nonlinearities and 
keeping the problem computationally tractable. 
 
In general, the solution to a filtering problem is an a 
posteriori probability density function (pdf) and in the 
linear Gaussian case, it is normally distributed with a 
mean vector and a covariance matrix. At a first glance, 
such a solution can never be the solution to a filtering 
problem with a hard constraint simply because a pdf 
compliant with a hard constraint cannot have support on 
the whole state space, as pointed in [Anonym, 2006]. In 
this paper and in [Simon and Chia, 2002], the constrained 
projection actually maps the whole state space onto the 
constraints, producing a constrained pdf with its support 
on the constraint surface. Although not explicitly in this 
paper, the constrained pdf can be derived for the second-
order constraints in this paper, from which the estimate 
statistics can in turn be determined albeit approximately. 
 
The paper is organized as follows. Section 2 presents a 
brief summary of linearly constrained state estimation and 
its problems encountered when the first-order 
linearization is used to extend to nonlinear cases. Section 
3 details the computational algorithm to solve the second-
order constrained least-squared optimization problem. In 
Section 4, computer simulation results are presented to 
illustrate the algorithm. Finally, Section 5 provides 
concluding remarks and suggestions for future work. 
 

2 Linear Constrained State Estimation 
 
In this section, we first summarize the results for linearly 
constrained state estimation [Simon and Chia, 2002] and 
then point out the problems it may face when the 
linearization is used to extend it to nonlinear constraints. 
 
Consider a linear time-invariant discrete-time dynamic 
system together with its measurement as 
 

kkkk wuBxAx ++=+1  (1a) 

kkk
vxCy +=  (1b) 

 
where the underscore indicates a vector quantity, the 
subscript k is the time index, x is the state vector, u is a 
known input, y is the measurement, and w and v are state 
and measurement noise processes, respectively. It is 
implied that all vectors and matrices have compatible 
dimensions, which are omitted for simplicity. 
 
The goal is to find an estimate denoted by 

kx̂  of xk given 
the measurements up to time k denoted by Yk = {y0, …, 
yk}. Under the assumptions that the state and measurement 
noises are uncorrelated zero-mean white Gaussian with w 
~ N{0, Q} and v ~ N{0, R} where Q and R are positive 
semi-definite covariance matrices, the Kalman filter 
provides an optimal estimator in the form of 

}|{ˆ kkk YxEx =  [Anderson and Moore, 1979]. Starting 

from an initial estimate }{ 00 xEx =  and its estimation 
error covariance matrix }))({( 00000

TxxxxEP −−=  
where the superscript T stands for matrix transpose, the 
Kalman filter equations specify the propagation of 

kx̂  and 
Pk over time and the update of

kx̂  and Pk by measurement 
yk as 
 

)ˆ(ˆˆ 1 kkkkkk xCyKuBxAx −++=+
 (2a) 

1)( −+= RCCPCAPK T
k

T
kk  (2b) 

QACPKAPP T
kkkk +−=+ )(1

 (2c) 
 
Now in addition to the dynamic system of Eq. (1), we are 
given the linear state constraint 
 

dxD k =  (3) 
 
where D is a known constant matrix of full rank, d is a 
known vector, and the number of rows in D is the number 
of constraints, which is assumed to be less than the 
number of states. If D is a square matrix, the state is fully 
constrained and can thus be solved by inverting Eq. (3). 
Although no time index is given to D and d in Eq. (3), it is 
implied that they can be time-dependent, leading to 
piecewise linear constraints. 
 
The constrained Kalman filter according to [Simon and 
Chia, 2002] is constructed by directly projecting the 
unconstrained state estimate 

kx̂  onto the constrained 
surface S = {x: Dx = d}. It is formulated as the solution to 
the problem: 
 

)ˆ()ˆ(minarg xxWxxx T

Sx
−−=

∈

(  (4) 

 
where W is a symmetric positive definite weighting 
matrix. To solve this problem, we form the Lagrangian 
 

)(2)ˆ()ˆ(),( dxDxxWxxxJ TT −+−−= λλ  (5) 
 
The first order conditions necessary for a minimum are 
given by 
 

0)ˆ(0 =+−⇒=
∂
∂ λTDxxW

x
J  (6a) 

00 =−⇒=
∂
∂ dxDJ
λ

 (6b) 

 
This gives the solution 
 

)ˆ()( 11 dxDDDW T −= −−λ  (7a) 
)ˆ()(ˆ 111 dxDDDWDWxx TT −−= −−−(  (7b) 

 
The above derivation does not depend on the conditional 
Gaussian nature of the unconstrained estimate x̂ . It was 
shown in [Simon and Chia, 2002] that when W = I, the 
solution in Eq. (7) is the same as what is obtained by the 
mean square method, which attempts to minimize the 
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conditional mean square error subject to the state 
constraints, that is, 
 

}|ˆ{min 2

2
YxxE

x
−    such that Dx = d (8) 

 
where 

2
⋅  denotes the vector two-norm. Furthermore, 

when W = P-1, i.e., the inverse of the unconstrained state 
estimation error covariance, the solution in Eq. (7) 
reduces to the result given by the maximum conditional 
probability method 
 

}|{Problnmax Yx
x

   such that Dx = d (9) 

 
Several interesting statistical properties of the constrained 
Kalman filter are presented in [Simon and Chia, 2002]. 
This includes the fact that the constrained state estimate as 
given by Eq. (7) is an unbiased state estimate for the 
system in Eq. (1) subject to the constraint in Eq. (3) for a 
known symmetric positive definite weighting matrix W. 
Furthermore when W = P-1, the constrained state estimate 
has a smaller error covariance than that of the 
unconstrained state estimate, and it is actually the smallest 
for all constrained Kalman filters of this type. Similar 
results hold in terms of the trace of the estimation error 
covariance matrix when W = I. 
 
In practical applications, however, nonlinear state 
constraints are likely to emerge. Consider the nonlinear 
state constraint of the form 
 
g(x) = d (10) 
 
We can expand the nonlinear state constraints about a 
constrained state estimate x(  and for the ith row of Eq. 
(10), we have 
 

+−+=− )()(')()( xxxgxgdxg T
iiii

(((   

 0))((")(
!2

1
=−+−− ii

T dxxxgxx L
(((   (11) 

 
where the superscripts ′ and ″ denote the first and second 
partial derivatives. 
 
Keeping only the first-order terms as suggested in [Simon 
and Chia, 2002], some rearrangement leads to 
 

xxgxgdxxg TT (((( )(')()(' +−≈  (12) 
 
where g(x) = […gi(x)…]T, d = […di…]T, and g′(x) = 
[…gi′(x)…]. An approximate linear constraint is therefore 
formed by replacing D and d in Eq. (3) with g′(x) and 

xxgxgd T ((( )(')( +− , respectively. 
 
Figure 1 illustrates this linearization process, which 
identifies possible errors associated with linear 
approximation of a nonlinear state constraint. As shown, 
the previous constrained state estimate −x(  lies somewhere 
on the constrained surface but is away from the true state. 
The projection of the unconstrained state estimate x̂  onto 

the approximate linear state constraint produces the 
current constrained state estimate +x( , which is however 
subject to the constraint approximation error. Clearly, the 
further away is −x(  from x, the larger is the approximation-
introduced error. More critically, such an approximately 
linear constrained estimate may not satisfy the original 
nonlinear constraint specified in Eq. (10). It is therefore 
desired to reduce this approximation-introduced error by 
including higher-order terms while keeping the problem 
computationally tractable. One possible approach is 
presented in the next section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 – Errors in Linear Approximation of Nonlinear 

State Constraints 
 

3 Nonlinear Constrained Estimation 
 
In this section, we consider a second-order state constraint 
function, which can be viewed as a second-order 
approximation to an arbitrary nonlinearity, as 
 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

1
1)(

0

x
mm
mM

xxf T
T  

 00 =+++= mmxxmxMx TTT  (13) 
 
As an example, a general equation of the second degree in 
two variables ξ and η is written as 
 

fedcbaf +++++= ηξηξηξηξ 222),( 22  
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⎣

⎡
= η
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ηξ

fed
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  (14) 

 
which may represent a road segment in a digital terrain 
map. 
 
Following the constrained Kalman filtering of [Simon and 
Chia, 2002], we can formulate the projection of an 
unconstrained state estimation onto a nonlinear constraint 
surface as the constrained least-square optimization 
problem 
 

)()(minargˆ xHzxHzx T

x
−−=  (15) 

subject to f(x) = 0

x1

x2

0

0)()( ≈− −− xdxxD ((

−x(
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If we let W = HTH and z = H x̂ , the formulation in Eq. 
(15) becomes the same as in Eq. (4). In a sense, Eq. (15) 
is a more general formulation because it can also be 
interpreted as a nonlinear constrained measurement 
update or a projection in the predicted measurement 
domain. 
 
Construct the Lagrangian with the Lagrangian multiplier λ 
as 
 
J(x, λ) = (z-Hx)T(z-Hx) + λf(x) (17) 
 
Taking the partial derivatives of J(x, λ) with respect to x 
and λ, respectively, setting them to zero leads to the 
necessary conditions: 
 
-HTz + λm + (HTH+λM)x = 0 (18a) 
xTMx + mTx + xTm +  m0 = 0 (18b) 
 
Assume that the inverse matrix of HTH+λM exists. Then, 
x can be solved from Eq. (18a), giving the constrained 
solution in terms of the unknown λ as 
 
x = (HTH+λM)-1(HTz – λm) (19) 
 
which reduces to the unconstrained least-squares solution 
when λ = 0. 
 
Assume that the matrix M admits the factorization M = 
LTL and apply the Cholesky factorization to W = HTH as 
 
W(= HTH) = GTG (20) 
 
where G is an upper right diagonal matrix. We then 
perform a singular value decomposition (SVD) of the 
matrix LG-1 [Moon and Stirling, 2000] as 
 
LG-1 = UΣVT (21) 
 
where U and V are orthonormal matrices and Σ is a 
diagonal matrix with its diagonal elements denoted by σi. 
For a square matrix, this becomes the eigenvalue 
decomposition. 
 
Introduce two new vectors 
 
e(λ) = […  ei(λ), …] T = VT(GT)–1(HTz - λm) (22a) 
t = [… ti …] T = VT(GT)–1m (22b) 
 
With these factorizations and new matrix and vector 
notations, the constrained solution in Eq. (19) can be 
simplified as 
 

)()( 11 λλ eIVGx T −− ΣΣ+=  (23) 
 
The first and second order terms in x in Eq. (18b) can be 
expressed in λ as: 
 

)()()()( 1 λλλλ eIIexMx TTTTTT −− ΣΣ+ΣΣΣΣ+=   

 ∑ +
=

i i

iie
22

22

)1(
)(

λσ
σλ   (23a) 

∑ +
=ΣΣ+= −

i i

iiTTT te
eItxm 2

1

1
)(

)()(
λσ
λ

λλ  (23b) 

∑ +
=ΣΣ+= −

i i

iiTTT te
tIemx 2

1

1
)(

)()(
λσ
λ

λλ  (23c) 

 
Bringing these terms into the constrained equation in Eq. 
(18b) gives rise to the constraint equation, now expressed 
in terms of the unknown Lagrangian multiplier λ, as 
 
f(λ) = (zTH – λmT) (HTH+λ M)-2(HTz – λm)  
 + mT(HTH+λ M)-1(HTz –λ m) 
  + (zTH – λmT) (HTH+λ M)-1m + m0  
 = e(λ)T(I+ λΣTΣ)-1ΣTΣ(I+λΣTΣ)-1e(λ)  
 + tT(I+ λΣTΣ)-1e(λ) + e(λ)T(I+ λΣTΣ)-1t +  m0  
 = 

0222

22

1
)(

2
)1(

)(
m

tee
i i

ji

i i

ii +
+

+
+ ∑∑ λσ

λ
λσ

σλ   (24) 

 
As a nonlinear equation in λ, it is difficult to find a 
closed-form solution in general. Numerical root-finding 
algorithms may be used instead. For example, the 
Newton’s method is used below. Denote the derivative of 
f(λ) with respect to λ as 
 

∑ +
−+

=
i i

iiiiii eeef 32

4222

)1(
)()1()(2)(

λσ
σλσλσλλ

&&  

 ∑ +
−+

+
i i

iiiiii tete
22

22

)1(
)()1(2

λσ
σλλσ&   (25a) 

 
where 
 
e&  = [… ie&  …] T = -VT(GT)–1m (25b) 
  
Then the iterative solution for λ is given by 
 

)(
)(

1
k

k
kk f

f
λ
λ

λλ
&

−=+
,      starting with λ0 = 0 (26) 

 
The iteration stops when |λk+1-λk| < τ, a given small value 
or the number of iterations reaches a pre-specified 
number. Then bringing the converged Lagrangian 
multiplier λ back to Eq. (19) or (23) provides the 
constrained optimal solution. 
 
Now consider the special case where W = HTH, z = H x̂ , 
and m = 0, that is, a quadratic constraint on the state. 
Under these conditions, t = 0 and e is no longer a function 
of λ so its derivative relative to λ vanishes, 0=e& . The 
quadratic constrained solution is then given by 
 
x(  = (W+λM)-1W x̂  (27a) 
 
where the Lagrangian multiplier λ is obtained iteratively 
as in Eq. (26) with the corresponding f(λ) and )(λf&  given 
by 
 



 
5

022

22

)1(
)( m

e
f

i i

ii +
+

= ∑ λσ
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The solution of Eq. (27) is also called the constrained 
least squares [Moon and Stirling, 2000; pp 765-766], 
which was previously applied for the joint estimation and 
calibration  [Yang and Lin, 2004]. When M = 0, the 
constraint in Eq. (13) degenerates to a linear one. The 
constrained solution in Eq. (19) is still valid. However, the 
iterative solution for finding λ is no longer applicable and 
a closed-form solution is available as given in Eq. (7).  

4 Simulation Results 
 
In this section, a simple example is used to demonstrate 
the effectiveness of the nonlinear constrained method of 
this paper and to show its superior performance as 
compared to the linearized constrained method in [Simon 
and Chia, 2002]. In this example, a ground vehicle is 
assumed to travel along a circular road segment as shown 
in Figure 2 with the turn center chosen as the origin of the 
x-y coordinates.  
 
 
 
 

 

 

 

 

 

 

 

Figure 2 – Tracking a Vehicle along a Circular Road 
 
 
 
Under this assumption, the road constraint is quadratic 
and can be written as 
 

[ ] 0
10
01

),( 2222 =−⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=−+= r

y
x

yxryxyxf  (28) 

 
Assume that the true position of the vehicle is at x = 
[rcosθ, rsinθ]T and an unbiased estimate denoted by x̂  is 
obtained by a certain means such that 
 
x̂  ~ N(x, P) (29) 
 
where P is the estimation error covariance matrix, which 
is assumed to take a diagonal  form as P = diag{[ 2

xσ , 
2
yσ ]} with 2

xσ = 2
yσ = 2σ . It is understandable that 

additional errors will appear if the estimate x̂  is biased. 

Furthermore, if the error covariance matrix is not 
diagonal, the correlation direction will also affect the 
statistical property. Ruling out such variability in 
conditions will make results analysis easier while not 
losing the generality. 
 
To apply the linear constrained Kalman filter of [Simon 
and Chia, 2002], the nonlinear constraint is linearized 
about a previous constrained state denoted by −x(  and can 
be written as 
 

[ ] 2r
y
x

yx =⎥
⎦

⎤
⎢
⎣

⎡−− ((  (30) 

 
In terms of the matrix notations, we have D = [ ]−− yx ((  
and d = r2. Since the previous constrained state −x(  is also 
on the circular path, it can be parameterized as −x(  = 
[rcos(θ+∆θ), r sin(θ+∆θ)]T where ∆θ is the angular offset 
and its distance to the true state is given by 
 

)cos1(2 22

2

2

2
θ∆−=−=∆ − rxxx (  (31) 

 
With W = P-1 (i.e., H = 1−σ I2 and z = H x̂ , where In stands 
for an identity matrix of dimension n), the linearized 
constrained estimate denoted by +

Lx(  can be calculated 
using Eq. (7). 
 
Similarly, with W = P-1, M = I2, and m0 = r2, the quadratic 
constrained estimate denoted by +

NLx(  is given by Eq. (27) 
 
In the first simulation, we set r = 100 m, θ = 45o, and σ = 
10 m and then draw samples of x̂   from the distribution in 
Eq. (29) as the unconstrained state estimates. We then 
calculate both the linearized and nonlinear constrained 
state estimates +

Lx(  and +
NLx(  at two linearizing points, i.e., 

two previous constrained state estimates −x( , with ∆θ = 0o 
and -15o, respectively. 
 
Figures 3 and 4 illustrate how the nonlinear constrained 
method of this paper and the linearized constrained 
method of [Simon and Chia, 2002] actually project 
unconstrained state estimates onto a nonlinear constraint, 
which is a circular road segment in this example. In 
Figure 3 for ∆θ = 0o, the linearizing point (small circle o) 
coincides with the true state (star *) (the estimator is not 
aware of, though). The linearized constraint is a line 
tangent to the circular path at the point. There are 50 
random samples drawn from the distribution of Eq. (29) 
as the unconstrained state estimates (dot ·), which are 
projected onto the linearized constraint using Eq. (7) as 
the linearized constrained estimates (cross sign x) and 
using Eq. (27) as the quadratic constrained estimates (plus 
sign +). Clearly, all the quadratic constrained estimates 
fall onto the circle, thus satisfying the constraint whereas 
not all linearized constrained estimates do so. 
 
In Figure 4 for ∆θ = -15o, the linearizing point is away 
from the true state. At 100 m, an angular offset is related 

x
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to a separation error by a factor of 1.74 m/deg. This 
corresponds to about 26 m for ∆θ = -15o. Although the 
linearized method using Eq. (7) effectively projects all the 
unconstrained state estimates onto the linearized 
constraint, the linearized constraint itself is tilted off, 
introducing larger errors due to the constraint 
approximation. In contrast, the quadratic constrained 
method, being independent of the prior knowledge about 
the state estimate, easily satisfies the constraint. 
 
In the second simulation, we draw 5000 unconstrained 
state estimates for each linearizing point ∆θ, which varies 
from -20o to 20o in steps of 5o. At each linearizing point, 
we calculate the root mean squared (RMS) errors between 
the true state and the linearized and nonlinear constrained 
state estimates, respectively.  Figure 5 shows the two 
RMS values as a function of the linearizing point together 
with the unconstrained state estimation error standard 
deviation σ. 
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Figure 3 – Projection of Unconstrained Estimates onto 

Constraints ( −x(  = x) 
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Figure 4 – Projection of Unconstrained Estimates onto 

Constraints ( −x( ≠ x) 
 

 
As expected, the RMS values for the linearized 
constrained estimates (circle o) grow large as the angular 
offset ∆θ increases. The RMS values for the quadratic 
constrained estimates (dot ·) remain constant and are 

slightly smaller than the unconstrained estimates, because 
the scattering along a constraint curve is smaller than in a 
two dimensional (2D) plan. For the same reason, the RMS 
values for the linearized constrained estimates are smaller 
than those of the quadratic constrained estimates for |∆θ| < 
7o. However, the use of RMS values for comparison is 
less meaningful in this case. As shown in Figure 6, both 
the unconstrained estimates (circle o) and linearized 
constrained estimates (dot ·) do not always satisfy the 
nonlinear constraints whereas quadratic constrained 
estimates (plus sign +) do all the time (i.e., the constraint 
is satisfied if the distance to the origin is 100 m). 
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Figure 5 – RMS Values of State Estimates vs. Angular 

Offset 
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Figure 6 – Constraint Satisfaction 

 
In a 2D setting, the circular path constraint of Eq. (30) 
allows for a simple geometry solution to the problem. The 
desired on-circle point x(  is the intersection between the 
circle and the line extending from the origin to the off-
circle point x̂ . The geometry solution can be written as 
 

)]
ˆ
ˆ

(cos[tan 1

x
yrx −=(  (32a) 

)]
ˆ
ˆ

(sin[tan 1

x
yry −=(  (32b) 
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Since it is an exact solution for this particular simulation 
example, we can use it to verify the iterative solution 
obtained by the quadratic constrained method. Figure 7 
shows the quadratic constrained estimates (cross x) 
obtained by the iterative algorithm of Eq. (27) and the 
exact geometry solutions (circle o), which indeed match 
each other perfectly. 
 
Finally, we use Figure 8 to show an example of the 
Lagrangian multiplier as it is calculated iteratively using 
Eq. (27). The runs for five unconstrained state estimates 
are plotted in the same figure and to make it fit, the 
normalized absolute values of λ are taken. As shown, 
starting from zero, it typically takes 4 iterations for the 
algorithm to converge in the example presented. 
 
In fact, for this simple example of a target traveling along 
a circle used in the simulation, a closed-form solution can 
be derived. Assume that W = I2, M = I2, m = 0, and m0 = -
r2. The nonlinear constraint can be equivalently written as: 
 
xTx = r2  (33) 
 
The quadratic constrained estimate given in Eq. (27a) is 
repeated below for easy reference: 
 

xxWMWx ˆ)1(ˆ)( 11 −− +=+= λλ(  (34) 
 
where λ is the Lagrangian multiplier. 
 
Bringing Eq. (34) back to Eq. (33) gives: 
 

2

1
ˆ

)
1

ˆ
( rxxxx TT =

++
=

λλ
((  (35) 

  
The solution for λ is: 
 

1
ˆ

1
ˆˆ 2 −=−=

r
x

r
xxT

λ  (36) 

 
where ||▪||2 stands for the 2-norm or length for the vector. 
 
Bringing the solution for λ in Eq. (36) back to Eq. (34) 
gives: 
 

2
ˆ
ˆ

x
xrx =(   (37) 

 
This indicates that for this particular case, the constraining 
results in normalization. This is consistent with the 
geometric solution shown in the above simulation. 
 
This suggests a simple solution for some practical 
applications. When a target is traveling along a circular 
path (or approximately so), one can first find the 
equivalent center of the circle around which to establish a 
new coordinate system. Then express the unconstrained 
solution in the new coordinate and normalize it as the 
constrained solution. Finally convert it back to the 
original coordinates. For non-circular but second-order 
paths, eigenvalue-based scaling may be effected following 

coordinate translation and rotation in order to apply this 
circular normalization. Reverse operations are then used 
to transform back. For applications of high 
dimensionality, the scalar iterative solution of Eq. (26) 
may be more efficient. 
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Figure 7 – Iterative Quadratic Constrained Solution vs. 

Geometry Solution 
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Figure 8 – Convergence in Iterative Lagrangian Multiplier 

 

5 Conclusions 
 
In this paper, we have presented a method for 
incorporating second-order nonlinear state constraints in a 
Kalman filter. It is generalized from our earlier solutions 
for quadratic constraint functions to more general second-
-order state constraint functions. It can be viewed as an 
extension of the Kalman filter with linear state equality 
constraints to nonlinear cases. Simulation results 
demonstrate the performance of this method as compared 
to linearized state constraints. 
 
Although the present solution considers a scalar 
constraint, it is possible to extend the solution to cases 
where multiple nonlinear constraints or hybrid linear and 
nonlinear constraints are imposed. Other directions for 
future work include search for more efficient root finding 
algorithms to solve for the Lagrangian multiplier. With a 
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quadratic cost function, it is of interest to further extend 
the iterative method to explore other types of nonlinear 
constraints of practical significance. 
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